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Gap solitons in damped and parametrically driven nonlinear diatomic lattices
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Considerable theoretical progress has been made in the study of gap solitons in nonlinear periodic
media and anharmonic diatomic lattices. In this paper we investigate the soliton excitations in a damped
and parametrically driven nonlinear diatomic lattice. An experiment for observing gap solitons is sug-

gested.

PACS number(s): 46.10.+z, 63.20.Pw, 63.20.Ry

The formation and dynamics of localized structures in
nonlinear systems outside of equilibrium are currently the
subjects of intense theoretical and experimental efforts
[1]. Examples include the parametrically excited surface
waves, elastic media, electroconvection in nematic liquid
crystals, and linear arrays of vortices, etc. In a recent ex-
periment, Denardo et al. found that a damped and
parametrically driven nonlinear coupled pendulum lattice
can have a wealth of nonpropagating self-localized struc-
tures. Steady-state patterns, such as the standing soli-
tons, kinks, and domain walls were observed [2]. Several
analytical and simulation studies of these localized states
have been proposed [3-6]. Nevertheless, there are some
problems remaining to be solved in theory and experi-
ment [3].

On the other hand, the so-called intrinsic localized
modes in anharmonic atomic chains have been receiving
much attention due to Sievers and Takeno [7-10]. Re-
cently the study has turned to the gap solitons in non-
linear diatomic lattices [11-14]. The concept of the gap
soliton was first introduced by Chen and Mills when they
studied the nonlinear optical response of superlattices
[15]. However, to the author’s knowledge, there is no ex-
perimental report on the observation of gap solitons up to
now. In this paper we investigate the localized structures
in a damped and parametrically driven anharmonic ‘““dia-
tomic” lattice. An experiment for observing gap solitons
is suggested.

We consider a coupled pendulum lattice, which is basi-
cally the same as the one used by Denardo et al. for ob-
serving solitons, kinks, and domain walls in a “monatom-
ic” pendulum lattice [2,6], but the bottom of the jth pen-
dulum is a small ball with mass m;. Then for the jth pen-

j
dulum we have the following equation of motion:

d*6; do;
ij—K2(9j+1+9j_1—29j)+ﬁj'd—t
+m;[wf+7cos(20,1)10,—am;6;=0, (1)
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where the dots represent time differentiation, 6 ; is the an-
gle of deflection of the jth pendulum, K, is a measure of
the coupling strength, w is the linear frequency of an un-
coupled pendulum, 7 is the drive amplitude, 2w, is the
drive frequency, B; is the damping parameter, and a is
the nonlinear coefficient. For the diatomic lattice we can
assume that 0,; =v,, my =m, By, =B, for j =2k (even
particles), and 0, =w,, My =M, By =B, for
Jj =2k +1 (odd particles). n is the index of the nth unit.

Then (1) can be split into two equations:
d%,

dt?

dv,
Iz(w,,+w,,_1—2v,,)+y1—(—i—t—

+[w3+7ncos(20,) v, —avi=0, (2

d*w, dw,
—J,(, 41y, —2w, )+,

dt? dt
+[w3+7ncos(20,t)w, —aw’ =0, (3)
where I,=K,/m, J,=K,/M, y,=B/m, and

¥2,=B,/M. The linear dispersion relation when neglect-
ing the damping and drive is

0? =0y + 1, + 1, [(I,+7,)P— 4, J,sin%(ga) ]2, (&)

where a is the lattice constant and @ and g are the fre-
quency and wave number of the linear wave, respectively.
The minus corresponds to the low-frequency mode (lower
or “acoustic” branch), and the plus corresponds to the
high-frequency mode (upper or “optical” branch). The
modes are separated by the gap Aw=w,— >0, where
wl=wj+2J, and wi=w}+2I,. The most interesting re-
gion of the linear spectrum for the diatomic lattice is the
vicinity of the maximum value of the wave number gp
[gg=m/(2a) is the Brillouin-zone edge], where two
branches with opposite signs of the dispersion are
separated by the gap. Near g =m/(2a), either heavy
(lower branch) or light (upper branch) atoms vibrate al-
most with opposite phases and a long-wavelength approx-
imation may be used for these opposite vibrations
[4,5,12,13]. So in the vicinity of the point ¢ =7 /(2a) we
can make the ansatz
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v, =(—1"[V(E,,Texpliot)+V*(&,,T)exp(—iwt)] ,

(5)

w, =(—1D"[W(,,T)expliont)+ W*(§,,T)exp(—iwt)],

(6)

where £, =¢€’2na and 7=¢€%t are slow variables, € is a
small (finite) parameter, and o is a frequency parameter
which has not been specified in this stage. For small
vibration we can assume that [V( § wsT)
Wig,,m]= e[V(&,,7),W(E,,7)] and (n,7,,730,—0)
= €11, 100¥ 200 8w) With 7, W, m, ¥ 10, 720, and Aw be-
ing of O(1) order. Substituting (5) and (6) into (2) and
(3), retaining to O (€®) and making the rotating-wave ap-
proximation, we can obtain

21a)—%1+( 2w +ioy,)V —2al, %W
+inV*exp[2i(w, —w)t]=3a|VI*’V=0, (1)

0 (o — it 14

2w or Hoi—o +ioy,)W +2aJ, ™

+inW*exp[2i (0, —0)t]—3a| W*W =0, ()

with x =2na, when returning to the original variables.
The method of derivation for obtaining (7) and (8) is basi-
cally the same as the one used in Ref. [5]. To simplify (7)
and (8) we make the following transformation [5]:

[V(x,t), W(x,t)]=[ 4 (x,t),B(x,t)]exp[i(w, —w)t] .
9)
Then we have

lwea—A+ (0} —02+ivw,y,)A —al, gB

+ina*—22yr=0, (0)
1we—a§+ (0}—02+iw,y,)B +aJ2-g—K

+‘17B*——|W|2W 0. (mn

In writing down (10) and (11) we have used the relation
20(0, —0)=20(0? —0*)/(0, +©)~02—o?. (10) and
(11) are two coupled nonlinear differential equations. To
solve them, in general, is very difficult. But for a station-
ary solution we can assume that 8/3t=0 and let [ 4 (x,1),
B(x,t)]=[f1(x), f,(x)]exp(id), where f; (j=1,2) are
real functions and ¢ is a real number to be determined
later. Under the condition

Y1=%Va2> (12)
(10) and (11) transform into

df,

?=—A,f2+0'1f%, (13)

d

—fi—Azfl—o;fl , (14)
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w2 +1ncos(24)]/(2a],), A,=[0}—w?
+imcos(2¢)]/(2al,), o,=3a/(2aJ,), 0,=3a/(2al,),
and cos(2¢)=[1—4w’y3/n*]"/%. The physical require-
ment for (12) will be discussed later.

It is not difficult to get a conservative quantity of (13)
and (14):

G =2A,f1+2A,f3

where A, =[wi—

—oft—o.f5 . (15)

Thus (13) and (14) describe the dynamics of a Hamiltoni-
an system with one degree of freedom. This point also
can be shown by defining f,=p, f,=¢q, and
H(p,q)=G /4. The Hamilton equation dgq/dx =dH /dp
and dp /dx = —0H /9dq yield Egs. (13) and (14). Here, x
plays a role of “time.” The solution can be obtained by
introducing an auxiliary function g =f,/f,, which
satisfies

2

9 | —(A+AgH)—

o G(o,+o,8% . (16)

Then f, and f, may be found by the relation

f%:U—‘?].(J_?{(AI—FAZgZ)i[(AI-FAZgZ)
1 p2

"G(01+0284)]l/2} ,
(17)
f1=8f> . (18)

It is helpful to use the method of qualitative analysis of
dynamical systems and consider possible solutions of the
system, (13) and (14), in the phase plane (f,,f,). Atten-
tion should be paid to separatrixes, which correspond to
the soliton or kink solution of different kinds. The phase
portrait of the system depends on the signs and on the
values of the parameters A, and A,, which change with
increasing w,. In experiment, w,, the external drive fre-
quency, is an adjustable parameter. As o, increases, a
number of subsequent bifurcations (here antibifurcations)
in the phase plane take place.

(i) For o, <[w3+(1/2)ncos(24)]'/?, both A, and A,
are positive and there are nine fixed points in the phase
plane. It is easy to show that the fixed points (0,0) and
[£(A, /0%, £(A,/0,)"?] are centers, and
[0,(A,/0,)/?] and [£(A,/0,)!/?, 0] are saddle points.
The phase portraits in this case have been shown in Fig.
1(a). There are two different types of separatrix curves.
One is an ABC type (heteroclinic) orbit and the other one
is an EFE type (homoclinic) orbit. The others can be ob-
tained by symmetry. The field distribution corresponding
to separatrixes ABC and EFE have been depicted in Figs.
1(b) and 1(c). We can obtain exact and explicit solutions
corresponding to these separatrixes.

(a) ABC type. In this case G =A?/0, and the bound-
ary condition for g is |g| = o« for x =+« and |g|= « for
x=0. Equation (16) may be easily integrated to give the
solution

1

_La 1
g(x) ~ B sinh(Bx) ’ 19
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FIG. 1. (a) The phase portrait for w, <[w}+ 17 cos(2¢)]; (b)
the field distribution corresponding to the heteroclinic orbit
ABC; (c) the field distribution corresponding to the homoclinic

orbit EFE.
1 s |1
2 — 2 2
=—L A +agitalel g2+ |£ ,
0_1+0_284 1 28 |gl 4 " l ] ]
(20)
with f,=gf,. Here a=[(0,A}—0,A})/0,]'? and

B=(2A,A,)!2. The lattice configuration corresponding
to the separatrix 4ABC has been shown in Fig. 2.

(b) EFE type. The orbits pass the saddle points
(£(A,/0,)17% 0), so we have G =A3/0,. The boundary
condition is |g|= o« for x =% and |g|=const for x=0.
We have

172
gx=5 [% /cosh(Bx), (1)
1 ’ . o 21172
f§=m A +Ag’ta gz—; B }
22)
with £, =gf,.

(i) At 0, =[w?+(1/2)ncos(24)]'/?, the first antibifur-
cation occurs. The fixed points contract and for

[0} +1ncos(24)]' 2 <o, <[w3+1incos(24)]'?,  (23)

: .l;]‘[ll.“;l.l. .

FIG. 2. The lattice pattern corresponding to the separatrix
ABC in Fig. 1(a).

where A; <0 and A,>0, the system possesses a saddle
point at (0,0) and two centers at [£(A,/0,)!/2,0]. The
phase portrait for this case is sketched in Fig. 3(a). The
separatrixes O AB and OCD (homoclinic orbits) corre-
spond to solitons, which have been shown in Figs. 3(b)
and 3(c), respectively. If the external drive, described by
7, is small, then (23) becomes w; <, <®,. So the local-
ized structures found in this case are gap solitons. The
envelope of the light-atom vibrations have the shape of
standard solitons. In the same time, the heavy-atom os-
cillations are also soliton but the shapes are different
from the standard envelope soliton.

To find solutions corresponding to the gap solitons we
note that the separatrix curves on the phase plane corre-
spond to G=0. Te boundary condition for g is |g| =const
for x =t o and |g| = o for x=0. Integrating (16) yields
the exact solution

g =%x[|4,/74,]"*cothy , 24)
hy
=5§,(24,)%|A sec , 25)
£1=8,28,) 1A [0,A2+0,Aktanh*y]'”2
= -—8,(2|A1| )'/2A2 tanhysechy 26)

[0,A2+0 Adtanh%]!/? ’

with y =(|A,|A,)%x, and §,=%1. §,=1 (—1) corre-
sponds to the OAB (OCD) orbit. The lattice
configuration corresponding to the O AB orbit is shown
in Fig. 4.

(i) At 0, =[w3+Lncos(2¢)]'/?, the second antibifur-
cation occurs. The fixed points contract further and for
0, > [0} +1ncos(2¢)]'%, where A;<0 and A,<0, the
system has unique center point (0,0). So no localized
structure can be found in this case.

\\__-

(b)

FIG. 3. (a) The portrait for

phase
[@}+ Encos(2¢)] <w, <[w}+ I cos(24)]; (b) the field distribu-
tion corresponding to the homoclinic orbit O AB; (c) the field
distribution corresponding to the homoclinic orbit OCD.
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FIG. 4. The gap soliton lattice pattern corresponding to the
separatrix O AB in Fig. 3(a).

Next we discuss the existence condition of the localized
structures presented above. From (12) we have
B,/m =B,/M. For the damping force of the pendulum
we can use Stokes’s formula

F=6mRn,u , (27)

if the velocity of the pendulum ball is not large [16].
Where R is the radius of the pendulum ball, 7, is the
dynamical viscosity of air and u is the velocity of the pen-
dulum ball. So we have B,=67n,R,, and B,=6mn,R,,,
where R, (R,,) is the radius of the pendulum ball with
mass m (M). It is easy to show that in this case the con-
dition (12) becomes

172

&"_ R

R, =
M Pm

) (28)

m

where p,, (p,) is the density of mass corresponding to the
pendulum ball with mass m (M). For the iron and glass
ball we have pg,=7.86 gecm ™ and Pglass (barosilicate
glass)=2.3 gcm ™3, respectively. Thus we have
Rgias=1.85 Rg.. If Rg,=1.0 cm we have R, =1.85

glass

cm, and when R, =0.5 cm we have R, =0.93 cm.
These requirements can be easily realized in experiment.

The solitons, kinks, and domain walls observed in
damped and parametrically driven nonlinear monoatomic
lattices clearly show that in discrete systems we may have
many new localized structures resulting from nonlineari-
ty. The experiment made by Denardo and co-workers
[2,6] may be viewed as an analogy and demonstration for
the nonlinear excitations in anharmonic atomic chains.
Although considerable theoretical study has been made
for the gap solitons in periodic media and anharmonic di-
atomic lattices [11-15], the experimental observation of
them is absent. The results presented above suggest that
the damped and parametrically driven diatomic pendu-
lum lattice may be a good system to display the gap soli-
ton patterns.

In conclusion, we have analytically investigated the
nonlinear localized structures in a damped and parame-
trically driven diatomic pendulum lattice. The results
show that the gap solitons may exist in this system and
the exact solutions and lattice patterns for these localized
structures are given. An experiment for observing the
gap solitons in an anharmonic diatomic lattice is suggest-
ed.
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